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ABSTRACT 344 b 
This Report is an attempt to improve analysis methods for time 

multiplexing systems under partial-success criteria. Results of the 
analysis are in the form of probability distribution for the number 
of surviving measurements in a multiplexer configuration. This form of 
result allows such criteria to be applied as the expected number 
of measurements, the expected value of the weighted measurements, or 
the probability that the number of surviving weighted measurements 
will be greater than some preassigned value. 

The analysis for multiplexer configuration is based upon first model- 
ing the basic multiplexer deck. A representative solid-state deck used 
by the Jet Propulsion Laboratory is used as an example. After the 
probability distribution of surviving measurements is obtained, its 
general form is used to extend the analysis to general and more com- 
plex multiplexer configurations of more than one deck. Some numerical 
results are presented and areas for further investigations are discussed. 

1. INTRODUCTION 

TO increase the reliability of the data handling systems 
of future space vehicles, reliability techniques and sys- 
tem organization concepts must be extended. If, for any 
generalized system, a reliability criterion of complete 
success is specified, the design problem for that system 
becomes onc of minimization of nonredundant system 
elements to accomplish a given functional requirement. 
After this minimization has been accomplished, the only 
recourses available for increasing reliability are in the 
component quality, circuit design, and redundancy disci- 
plines. In a data handling system, however, a reliability 
criterion of complete success is not necessarily the most 
realistic, since there are many combinations of internal 
failures which, while resulting in some information loss, 
could not necessarily be classified as a complete system 
failure. The design problem for a system under a partial 

success criterion is generally to insure that if failures 
occur, the effect of the failures should be minimized. 
Implicit in most present day design processes is the 
analysis task. 

A function basic to a data handling system is time 
multiplexing, and it is in association with this function 
that partial success criteria assume a great deaI of mean- 
ing. Analysis methods of time multiplexing systems to 
measure their ability to produce partial successes have, 
at best, been time consuming to the point of generating 
negligible inputs to the design process. This Report is an 
attempt to improve the analysis methods for time multi- 
plexing systems by increasing the realism and signifi- 
cance of the final results and also by decreasing the time 
required to obtain these results. While this Report is 
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theoretical in nature and lacks empirical support from 
tests of actual multiplexer configurations, the results are 
thought to be of sufficient value to warrant dissemination 
without this empirical evidence. 

The analysis for multiplexer configurations is based 
upon modeling the basic element of the system, the multi- 
plexer deck. This model is based upon a solid-state deck 
and switch arrangement used by the Jet Propulsion Lab- 
oratory in multiplexing systems for engineering data. 
The probability distribution of the number of surviving 
data points on the deck is derived in two forms, each 
form having its own particular usefulness for subsequent 
analysis in the report. The first form of the probability 
distribution indicates the probability of, as one example, 
i data points surviving; the second form indicates the 
probability of i data points surviving as a function of 
the location of the points on the deck. This Report then 
utilizes the deck probability distributions to obtain ex- 
pressions for the probability distributions of the number 
of surviving data points for two general multiplexer con- 
figurations of more than one deck. A significant reduction 
in the total number of outcomes which need to be ex- 
plicitly elaborated is obtained by accounting for a small 

. 
number of primary failure combinations and performing 
convolution operations with various deck probability dis- 
tributions for each primary failure combination. The 
convolution operations are also simplified by transforming 
the deck probability distribution into generating func- 
tions and consequently transforming the convolution 
operation into multiplication of polynomials. The tech- 
nique of analysis for general multiplexer configurations 
is applicable to any type of basic deck, provided that the 
deck output can be described in the form of a probability 
distribution for the number of surviving data points. 

The final sections of this Report treat the analysis prob- 
lem for more complex multiplexing systems, present some 
numerical results obtained from a computer program of 
a basic deck model, and outline areas for further study. 

The analysis methods presented must rely on high- 
speed computer capability to achieve results. If this 
capability can be assumed, then the analysis methods 
presented will provide an effective tool for the relia- 
bility evaluation of relatively complex time multiplexing 
systems. 

II. DERIVATIONS FOR THE BASIC DECK MODEL 

A. Introduction 

Figure 1 is a functional representation of a multiplexer 
deck used as the basic model for this analysis. There is 
a total of N stages which sequentially route data to the 

CL 

- 1  L - - -- - - TEFD_s!c_KJ' 

Fig. 1. Basic multiplexer deck model 

deck output. Each stage consists of a solid-state switch 
S i ,  driven by a memory element M i ,  with i ranging from 
1 to N. The stages are turned on sequentially when clock 
pulses are applied to the input. Whenever the last stage 
N, is turned on, the next clock pulse will turn on stage 
zero through a feedback mechanism, and the sequential 
cycle repeats. Stage zero is a memory element M,, which 
will deliver a sync indication to another point in the data 
system of which the deck is a member. This element, 
along with the feedback, clock conditioning, and any 
signal conditioning circuits common to all data points 
on the deck comprise the series (in a reliability sense) 
portion of the deck. 

6. Definitions and Assumptions 
Let 

A s = probability of a switch being successful 

2 
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A 

so = probability of a switch failing in the “open” mode 
such that the data point is isolated from the bus 
regardless of input drive signal and the degree of 
isolation is high enough such that other successful 
data points on the bus are not considered as hav- 
ing failed 

A 
S, = 

A m= 

A ma = 

A m, = 

probability of a switch failing in the “closed” 
mode such that the degree of isolation of the data 
point is low enough to cause failure of all other 
data points on the bus 

probability of a memory element being successful 

probability of a memory element failing in the 
“open” mode such that it passes no drive signal 
to the next memory element and indicates an 
“open” signal to its attendant switch 

probability of a memory element failing in the 
“closed” mode such that it indicates a “close” 
signal to its attendant switch and passes no signal 
or a “close” signal to the next memory element. 

It is assumed that 

s + so + s, = 1 

m + m, + m, = 1 

consequently so, s,, ma, and m, could be of the form, 

[l - s] X [conditional probability of “open” (or “closed”) 

and 

[ 1 - m] X [conditional probability of “open” (or “closed) 

mode given failure] 

mode given failure] 

It will also be assumed that the conditional probabilities 
above are not functions of time or state of the element 
although [ 1 - s ]  and [ 1 - m] will necessarily have time 
arguments. The conditional probabilities above will not 
be used explicitly in the remainder of this Report but 
will be implicit in the terms so, s,., ma, and m,; they were 
used here only to state an assumption more clearly. 

There now remains to be considered what constitutes 
failure of the deck, or failure of a single data point. First, 
if any memory element in the sample space fails in the 
“closed or “open” mode, the full sequencing capability 
of the deck will be lost. If a memory element fails in the 

“open” mode and all preceding memory elements are 
successful, then the deck will short count through the 
internal feedback mechanism. It is felt that such a failure 
will not cause complete deck failure if the sync memory 
element M,, is still good, because data processing on the 
ground could possibly determine the data points surviv- 
ing in a short counted sequence. If any memory element 
fails in a “closed mode, the deck will short circuit through 
the internal feedback mechanism and the entire sequenc- 
ing function will be stopped. In this case, although there 
may be a single data point surviving, the absence of sync 
identification may cause some ambiguity as to which 
point was surviving. Therefore, this case is treated as a 
complete failure of the deck. Loss of memory element M, 
either in the “open” or “closed state is also considered 
a failure of all data points on the deck. Second, if a switch 
coupled to a failed “closed memory element is good or 
bad, or if any switch fails in the “closed state regardless 
of the memory element states, then the deck is considered 
to have failed. Thus, any partial survival of data points 
with unambiguous identification must be on a sample 
space conditioned by the event that no switch or memory 
element “closed” failures have occurred, and that the 
series elements mentioned previously are successful. 

A few more assumptions should be stated at this point: 

1. Although loading conditions, duty cycles, etc., will 
change as failures occur, it is assumed that there 
is no dependence among the probabilities of the 
individual elements, i.e., they will change only as a 
function of time. 

2. If a switch or memory element fails in a certain 
mode, it is assumed that it will remain in this mode 
over the period of time considered. 

Essentially, the probability distribution of data points 
surviving will be derived assuming mutual independence 
among the deck elements in a probability sense, but will 
take into account the functional dependence existing 
among these elements. 

C. Analysis 

As mentioned before, any distribution of data point 
partial success must be conditional on the event that no 
switch or memory element failures in the “closed mode 
have occurred and the event that the deck series elements 
are successful. To arrive at this conditional distribution, 
the first notation is that any combination of successes, 
“open” failures and “closed” failures for the switches, is 

3 
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given by terms of a trinomial distribution denoted by S. 
Thus, 

is the probability that in N trials (N switches) there are 
X, successes, X, “open” failures, and X, “closed” failures, 
where 

X, + X, + X, = N 
Similarly, for those N memory elements which drive the 
switches, any combination of memory element successes 
and failures is given by terms of a trinomial distribution 
denoted by M. Therefore: 

N !  
M (Y- Yo, YJ y,! yo! y,! ( 4 Y 8  (mJY0 (mJYc 

where Y, is the number of memory element successes, Yo 
is the number of “open” failures, and Y,. is the number 
of “closed failures and, of course, 

Y, + Yo + Y, = N 

Let 

P {&}A probability of events E, where E, is the success 
of all series elements in the deck, i.e., memory 
element M o ,  the feedback circuits, the clock 
conditioning, and any signal conditioning com- 
mon to all data points on the deck. 

Note that the probability distribution of any surviving 
data points on the deck will then be of the form 

P {E,, X, = 0, Y, = 0 }  S (X,, X, I X, = 0) M (Y,, Yo I Y, = 0) 
= P { E , }  P {X, = 0}  P {Yc = 0) 

x s (X, ,X,~Xc=O)M(Y, ,YoIY,=0)  
(1) 

because of the mutual independence in a probability 
sense of the elements in the deck. With the assumption 
of independence between S and M, we can take each 
trinomial distribution independently and condition it with 
the events X, = 0, and Y, = 0. The processes are identical 
for both, so let us take the switch distribution. Now 

(2) 
s (X8, x,, x, = 0) 

s (X, = 0)  
S ( X . , X , ~ X ,  = 0) = 

The term in the numerator of Eq. (2) is 

(3) 

where .* 

(: ) is the standard notation for a binomial coefficient. 

Note, however, that Eq. (3) is not a term from the bi- 
nomial distribution since 

s + s , # l  

The denominator in Eq. (2) is 

S ( X , = O ) =  2 ( iq) ( s ) X *  ( s , ) N - X *  = (s + sop 
A “ Z 1 1  

Equation (2) then becomes 

(x”.) (s)xa ( s , )N-Xa 

(s + sJN S ( X , , X , ( X ,  = 0) = 

Using the same method to condition the memory ele- 
ment distribution, final terms in the distribution of data 
point partial success in Statement (1) will be of the form 

(4) 

It is the terms in the square brackets on the right side 
of Eq. (4) which require further rearrangement for our 
purposes, since with the form shown in Statement (4), 
specific arguments of X, and Y, do not yield unique values 
of the number of data points surviving. Let 

PND {i} = PND { N - j }  = The probability of N - j data 
points surviving on a deck of 
length N. 

A 

The notation N - i is temporarily used here for greater 
ease in explanation while deriving subsequent expres- 
sions. Figure 2 shows the end of the deck previously 

sN-j sN- j+  I sN- I 

I UPSTREAM - DOWNSTREAM 

Fig. 2. Basic deck re-labeled 

4 
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. 
shown in Fig. 1, with some re-labeling necessary for our 
explanation. 

Assume that the general term for PYD { N  - j }  points 
surviving is being evaluated. In this term, the maximum 
number of memory element “open” failures which can 
be tolerated is j and all these possible failures must 
occur in elements M,,-j+l to M,.  Thus the subterms 
in P,D { N  - i }  have factors of (m)N-r (m, ) r  where 
r = 1,2, , i. There are (!) different ways in which T 

“open” failures may occur in i memory elements. If a 
failure occurs in the N - i + 1 memory element, it will 
fail all data points downstream from N - i and will leave 
no possibilities for any switch “open” failures upstream 
from N - i + 1. If an “open” failure occurs in, say, ele- 
ment A I N - , ,  it will fail all data points downstream from 
N - 2, but leaves a possible i - 2 “open” switch failures 
which may be tolerated upstream from N - 1. Of course, 
“open” switch failures may be tolerated downstream 
from, and in, any “open” failed memory element in the 
j elements of the deck. Generalizing, it can be stated 
that for j possible data point losses and r possible mem- 
ory element losses there are, in the last r + k ’ L  j elements, 

. 

( r  + k’) 

j - (r + k’) 

possible arrangements of memory ele- 
ment “open” failures, 

data points downstream which have in- 
duced failures but can tolerate switch 
successes or switch “open” failures, 

other data points upstream which can 
tolerate “open” switch failures of which 
there are 

possible arrangements. 

With tlie above relationships 

PArD { N  - i }  = P { E 8 }  [ mN (7)  S K - i  (sop 

For i = 0,1,2, . . . , N - 1 and after a change of vari- 
ables, namely, k = r + k’ and i = N - i 

PND { i }  = P { E , }  [ mN (” i) si 

(5) 
N - i - k  1 

for i = 1,2, . . . , N .  

For i = 0 consider failure of the deck due to any ele- 
ments failing in the “close” mode and also due to some 
combinations of “open” failures, given by Eq. (5) with 
i = 0. Therefore 

The verification that Eq. (6) and (7) are terms of a 
probability distribution, or simply that 

N 

PyD {i} = 1 
i = n  

is given in Appendix A. 

The next probability distribution which will be needed 
is the probability distribution of a multiplexer deck for 
arguments of 

A 
i = number of data points surviving, 

A 
x i  = the greatest index of one of thc i data points sur- 

viving. Index here is the number of the data point 
which indicates its place in the multiplexer deck. 
Since xi is, by definition, the greatest index of the i 
points surviving, there cannot be any points sur- 
viving on the deck with indices greater than xi. 

Figure 3 illustrates the model to be used here and the 
method of indexing. It is essentially a simpler representa- 
tion of Fig. 1, and all assumptions stated for the previous 
derivation apply to this derivation. Many methods used 

5 
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Fig. 3. Method of deck indexing 

to derive the expression for P,vD {i} can also be applied 
here. In fact, defining 

A 
PND { i ,  xi}  = the probability of exactly i data point 

successes with index xi,  

this derivation can be entered at the point of stating that 

P N D  (0, T o }  = P N D  (0) 
where x,, is merely a notation and has no meaning in 
terms of a greatest index. For i = 1,2, . . . , N consider 
what is the probability of exactly i successes for a fixed 
index xi and fixed indices 

X i - ] , X i - 2 ,  * . ‘ , XI, XI 

where 

X i > Z i - 1 > X i - * >  . . > x 2 > x t 1 1  

The probability is 

[ P  { E , }  simza -i]  X [probability of 0 successes in 
the remaining N - xi elements 
of the deck given no “closed 
failures may occur] 

This probability is independent of the value of the indexes 
X I , X Z ,  . . , x, - ,. Now, the probability of exactly i suc- 

* 

cesses for a k e d  value of xi for all values of xl, x r ,  * . * , x i  is 

ing N - x i  elements 
of the deck given no 
“closed failures may 
occur] 

Since there are 

ways that the remaining i - 1 successes can be distributed 
in the x i  - 1 switches of index less than xi. Also, the 
probability of 0 successes in the remaining N - xi ele- 
ments of the deck given that no “closed failures occur, 
can be borrowed from the previous derivation, more 
specifically, from the second term on the right side of 
Eq. (6) with P { E , }  = 1 and N - x i  substituted for N .  
Therefore 

for i = l , 2 ,  . . . , N ,  xi = i ,  i f l ,  . . . , N  and, at the 
risk of being repetitive, 

PND { 0, x,} = P ,  D { 0 }  (8) 

The verification that Eq. (7) and (8) are terms of proba- 
bility distribution is given in Appendix B. 

6 
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111. ANALYSIS OF MULTIPLEXER CONFIGURATIONS 

A. Introduction 

In this section, the derivations of the probability for 
the number of surviving points for the basic deck model 
will be applied to general multiplexer configurations. The 
first analysis example is rather simple, and consequently 
will find somewhat limited application. The example 
does serve as a good vehicle for illustrating the gen- 
eral method of approach to the multiplexer analysis 
problem. From this first example, the progression is 
to a more general analysis method which is extremely 
flexible in application. The last example is a method 
of approach to a very complex and interdependent multi- 
plexer configuration which is similar to the type used on 
the Mariner C spacecraft. 

B. Analysis of a Simple Multiplexer Configuration 
with Two Levels of Commutation 

Though a relatively simple configuration is used in this 
first analysis, it will serve as a vehicle to typify an appli- 
cation of the single deck analysis to configurations of 
more than one deck. After the initial derivation for the 
probability of data points serving in the basic multiplexer 
configuration, some variations in the basic configuration 
will be made for cases where the derivation is still ap- 
plicable. In Fig. 4 a multiplexer is shown with N sub- 
decks, each of length Nsn, the outputs of which are routed 
to the N channels of the main deck, D,,. This main deck 
has an extension deck, D,,,+,, of arbitrary length N E ,  the 
output of which is connected to the main deck data bus. 
Note that D x +  , needs no sync memory element. A counter 
divides the basic clock and its output is routed to the 
subdecks in parallel. Each subdeck has its own sync 
memory element which is routed to some point after the 
output of the multiplexer. Each subdeck does not neces- 
sarily have to have this synchronization indication, if the 
counter is provided with more memory and the capability 
to reset the subdecks to some initial state and the counter 
indication is used instead of subdeck indications. AS far 
as the analysis is concerned it matters little which of the 
two schemes is assumed. 

The primary assumption for this analysis is that the 
probability distribution of surviving points for the sub- 
decks are the same. Note that this allows only limited 
application of the analysis to actual configurations. Some 
flexibility in application is allowed by the fact that the 
series elements of each deck do not necessarily have to 
be of the same function, although they must have the 
same probability of success. 

n-1 I SUBDECKS io ( A L L  LENGTH OF Nsd EQUAL 

I 

I 

oCLOCK 
DIVIDE BY 
N + NE 

- I 

- 
-, 
I ES C SYNC 

MAIN DECK 

I 
Dl 1 

I 
- - 

I t 0, (LENGTH N )  - - t OUTPUT 
I 

I 
I 

I 

I 

-, 

- 
TI 

Fig. 4. Simple multiplexer configuration 

Let 
A PNcNs,) + N E  M, {i} = The probability of i data points suc- 

ceeding (with sync) in the multi- 
plexer of Fig. 4, where the maxi- 
mum number of data points in the 
multiplexer is N ( NsD) + N E  

P {C} = The probability of success of the A 

counter 
- A  P {C} = The probability of failure of the 

counter 
and 

A PNjDi {i} = The probability of exactly i data 
points serving on deck i where the 
total number of data points in the 
deck is N j .  If there is little doubt as 
to what Ni is when a particular deck 
is specified, it will be dropped. For 
example 

PND,  { i }  = PD, {i} 

7 
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Begin the analysis by first noting that the main deck 
output and the output of the extension are connected. 
Thus if any “closed’ failures occur either in the main 
deck or its extension, the entire multiplexer has failed. 
Therefore, the probability of zero points surviving in the 
distribution P M ,  { i} will contain the term 

1 - [(s + so) (m + m o ) ] N + N ~  P {E,} 

in addition to others. The important point here is that 
the event of the multiplexer failed because of “closed 
failures in the main deck, or its extension is accounted 
for by this term, and henceforth when dealing with these 
two decks it is necessary to speak of terms from their 
conditional distribution given that no “closed” failures 
occur, times the probability that the event by which 
they are conditioned has occurred. 

Let 

PATE D,+, {i,XC = Y, = O }  = [(s + so) (na + mo)]”E 

x P,,  D,,, { i l X ,  = Y, = O }  

x ( N E  - ) ( s  + s o ) k ( s o ) N s - i - k  N E - i - k  

for i = 0,1,2, ‘ . ’ , N E .  To continue the analysis with a 
clearer understanding, separate the distribution PND,, { i} 
into two parts. Let 

and 

k = r  5 (”-’>( r - 1  N - i - k  N - k  ) ( s + s 0 ) k ( s . ) N - ( - k  

These expressions are those parts of P,D,, {i} in which 
an output clock is delivered, and is not delivered to the 
main deck extension, respectively. At this point, it is 
necessary to define some notation associated with gen- 
erating functions. Appendix C presents a short discussion 
of generating functions and their usage in this Report. Let 

N l  A NjDj  {i} Si = The generating’function 
i = O  for the probability dis- 

tribution of multiplexer 
deck, Dj. As before, the 
subscript N j  will be 
dropped whenever pos- 
sible. 

NiDj  (S) = 

A N.YD 

N s , D ( S )  = NsDD {i} Si = The generating function 
for the probability distri- 
bution for any subdeck. 
Since the subdeck prob- 
ability distributions are 
equal, so are their gen- 
erating functions. 

i = o  

Also let 

be the generating function of the j-fold convolution of 
the subdeck probability distributions, and let 

be the generating function of the i + 1-fold convolution 
of i subdeck probability distributions with the probability 
distribution P,,  D N + ,  {i, X, = Y, = O}. Note that a sin- 
gle subscript to the right of the letters B and C above 
represents a number of convolutions, whereas when used 
with the letter D it represents a deck number. 

For convenience the coefficients 

c o - k  (s) = 1 

will be defined for all k. With this last definition note that 

Bo (S) = N E D N  + 1 (S) 

B o - k  = P,,D,+, {k, x, = Y, = O} 

and, therefore 

Now it is possible to derive the terms for the proba- 
bility distribution 

~ N ( N S D , + N Q M 4  {i) 

The term P M ,  {0} is derived by brute force enumeration, 
and can be conveniently listed in seven mutually exclu- 
sive outcomes. The first outcome is 

1 - [(s + SO) (m + mo)IN+NE P {Ea) 

8 
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. 
as before. The second is 

PDO {O}, Bo-0 

which includes the counter-failed or not-failed, all proba- 
bility states of the subdecks (which sum to l), the main 
deck delivering on output to its extension, and both the 
main deck and its extension yielding no data point suc- 
cesses. The third outcome is 

I' 

P { E >  Z PDO {ill B o - 0  
j = i  

which includes the counter in a failed state, all states 
of the main deck yielding a finite number of data points, 
and the extension yielding zero data points. The fourth is 

N 

P {C} Z PDo { j } l  Bj-0 
j=1 

which includes the counter in a successful state, all states 
of the main deck yielding i > 0 data points, and for each 
i, the zero term of the j-fold convolution of the subdeck 
distribution with the extension distribution. The fifth 
outcome is 

PDO { O ) ,  [ ( S  + So) (m + % ) I N E  
which includes the counter-failed or not-failed, all states 
of subdecks, the main deck yielding zero data points and 
delivering no clock to the main deck extension, and all 
states of main deck extension P,, D N + l  {i, X ,  = Y, = O), 
which sum to 

[ (S  + So)  (m + mo)lN" 

PM, {i} = 

r 

L 
where . 

PM,{i} = 

i- 

The last two outcomes are 

and 
N 

P { C }  I: PDo { j } t  Cj-0 [(s + so) (m + mollNE 
i = 1  

Using the fact that P {C} + P {e} = 1 and combining 
terms 

PM, (0) = 1 - [ ( s  + s,) (m + mo)lN+'" P { E , }  

+ i P D ~  {j}i ( P  {c} ~ o - o  + P {c> Bj-0) 
j = o  

+ [ ( S  + So) (m + mo)lNE 

j = o  
(9) 

For P M ,  {i} and i > 0, consider two ranges of i. First, if 

l L i l N E  

the counter can be allowed to fail; second, if 

NE < i d N ( N s D )  + N E  

then the counter cannot be allowed to fail, since if it does, 
there is only a maximum of N E  points which can survive. 

Therefore, for 1 i N E ,  

r N 1 

1 

-I 
denotes "the integer part of . . . ," For 

NE < il N(N8D) + NE 

J (11) 

9 
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Verification that the P M ,  {i} are terms of a probability 
distribution is available but is omitted, because it is not 
considered to be particularly edifying. 

Two useful variations of the configuration in Fig. 4 
can be made and not affect the basic form of the analysis. 
The first variation considers the main deck extension to 
be of length zero. In this case the counter becomes a 
series element for any data point survival. Therefore, all 
that is needed to alter the basic derivation is to: 

1. Set all N, = 0 

2. Set P { C >  = O  

3. Set all B o - k  = 1 for all k 

4. Replace the expression in the P M ,  ( 0 )  term 

1 - [(s + so) (rn + mo)]N+N” P { E * }  

with 

For a main deck extension of zero length after collecting 
terms 

P M ,  ( 0 )  = 1 - [ ( s  + s o )  (m + mo)]”P { C }  P { E , }  

. 
and for l L i L N ( N , , )  

I ’  P M ,  {i} = P { C }  PDo {k} Cj-i  

ri + N,, - 11 
[ ’  
k =  L Nso J 

The second variation considers the possibility of using 
the main deck or the main deck extension to clock the 
sequencing of the subdecks, instead of the counter. To 
alter the basic derivation for this variation, merely set 
P { E }  = 0, and P { C} = 1 in Eq. (9) and (11) and extend 
the range of i associated with Eq. (11) to 

l l i l N ( N s u )  + N E  

Equation (10) is neglected for this variation. The final 
form of the probability is straightforward and will not 
be presented here. 

The two variations discussed here for the multiplexer 
configuration in Fig. 4 are about the only ones which 
can be easily accommodated by this analysis. For exam- 
ple, how is a configuration analyzed in which the sub- 
decks do not have the same probability distributions? 
This case would occur quite frequently in practice if 
signal conditioning associated with subdecks has different 
success probabilities, or if the multiplexer had more than 
two levels of commutation, where subdecks themselves 
have signals from lower commutation levels fed through 
them. Also, how could the configuration of Fig. 4 be 
analyzed if the outputs of the subdecks did not enter 
the first N channels of the main deck, but were dispersed 
into the inputs of the main deck and its extension with 
single points between subdeck inputs? How can trans- 
ducer reliability be introduced into single point inputs 
if desired? In answer to these questions, a more general- 
ized analysis method is presented in the next section. 

1 0  



JPL TECHNICAL REPORT NO. 32-698 

. 
IV. GENERAL ANALYSIS FOR A COMPLEX MULTIPLEXER CONFIGURATION 

WITH TWO LEVELS OF COMMUTATION 4 

Figure 5 is a generalized multiplexer configuration. 
The main deck, Do, receives pulses from the clock source 
and sequentially connects the output of N subdecks to 
the output. The main deck has a sync element which is 
considered to be part of its series elements of Do. The 
subdecks D,,  D2, . . . , D ,  are considered to have proba- 
bility distributions of surviving points 

respectively, which are not necessarily equal with respect 
to the maximum number of surviving points possible, or 
with respect to the probability terms, even if the maxi- 
mum number of surviving points are equal. The sub- 
decks are clocked by a counter, which has a probability 
of success P ( C } .  It should be pointed out at this time 
that the analysis of a generalized subdeck m y  also ac- 
count for any single source inputs to the main deck. 
Whether the analyst chooses to make single source inputs 

1 - 
ES c SYNC 

I, c 2 - 5  - I MAIN DECKS 
I I 00 (LENGTH N )  
I I  

I 
C OUTPUT I 

,, 

- SUBDECK D2 
(MAX DATA 
POINTS =N2) - I j I  

I 
- 

I 

I T  I 
SUBDECK DN 

(MAX DATA 1 
POINTS = NN) 

ON I - 
Fig. 5. Generalized multiplexer 

probabilistic, by taking into account any signal condi- 
tioning equipment or transducers associated with the 
source, or deterministic, by neglecting such equipment, 
is at his own discretion. For example, with a probabilistic 
single source input, the probability distribution of the 
number of surviving points will be of the form p (0) + p (1) 
with generating function p (0) + p (1) S .  If the input is 
deterministic, p (1) becomes 1 and the generating func- 
tion becomes S .  Single source inputs, of course, do not 
depend on the counter C, for success. The same consid- 
eration for establishing sync on the subdecks discussed 
in the preceding subsection also apply here. 

In approaching this analysis, it should be stressed that 
the final output of the analysis procedure is a probability 
distribution of surviving points for the multiplexer. Thus, 
a procedure is set up whereby a one-dimensional array of 
numbers (the probability distribution) is generated. Since 
computer operations are in mind for any particular analy- 
sis task, matrix notation is used to define the operations 
necessary to generate the final output array. Many differ- 
ent matrices which will have to be employed to set up 
the analysis. If the operations were programmed on a 
computer, many matrix operations explicitly outlined here 
would lose their identity. The procedure outlined here 
also attempts to define iterative operations for building 
up the final output array such that the use of mem- 
ory in computer operations could be kept to a tolerable 
minimum. 

First in the analysis procedure is the methodical task 
of setting down definitions. Let 

A P,,Dj {i} = PDi {i} = The probability of i data 
points surviving on subdeck 
D j ,  i = 1,2, . .  . , N ;  i = O ,  
1, . . . , N j ,  where N j  is the 
maximum number of points 
the subdeck can deliver. 
Note that Ni will be 
dropped if no confusion 
will arise from doing so. 

A A 
m x  ( N j )  = N,, (1) = The maximum number of 

data points which can be 
delivered by any of the 
single subdecks. 

i 
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A A 
m u x  ( N i  -t- N k )  = N,, (2) = The maximum number of 

data points which can be 
delivered by two subdecks, 
over all combinations of 
two subdecks. Note that, 

jtk 

N m ,  (2 )  = m X  ( N j )  (Nk) 
i i t k  

From the above definitions M,, (3), Nma, (4), . . . , Nmag ( N )  
should be clear. Also it should be evident that, 

A A 
N,, ( N )  = ( N i )  = N,, = The maximum number of 

A l l  i data points which the 
multiplexer can deliver. 

Also let, 

A 
IAPDo) = 

A I PNm,M, I F = The final output matrix 
of dimension (N,,, + 1) 
X 1. The number in the 
rth row will contain the 
probability of r - 1 data 
points surviving in the 
multiplexer of Fig. 5. 

A I PN,,M, I I = The output matrix of di- 

(i, i )  = 

PDi (i - 1) 

mension ( N m ,  + 1) X 1 in 
the initial state. The term 
in the first row for this 
matrix is PND” (0, x , }  = 
PND” { 0 }  which will be 
recognized as the term for 
the probability of zero 
data points from the main 
deck. All the remaining 
elements are zero. 

A = The auxiliary matrix of 
the main deck probability 
distribution where the ele- 
ment in the xith row and 
ith column is as indicated 
above. The matrix has 
dimensions of N X N and 
has elements of zero 
above the diagonal since 
PND” { i ,  x i }  is not defined 
for i > x i .  The sum of the 
rows and columns of this 
matrix do not sum to 1. 

=The initial matrix of all 
subdeck probability dis- 

‘ tributions where the ele- 
ment in the ith row and 

A 

jth column is the proba- 
bility of i - 1 data points 
surviving on subdeck Di. 
This matrix will have di- 
mension [N,,, (1) + 11 X 
N .  The columns of this 
matrix will sum to 1. 

( i ,  i )  = = The initial matrix of the 
single point subdecks, 
where the element in the 
ith row and jth column is 
the probability of i - 1 
points surviving on sub- 
deck (single point) Dj for 
all Di which have single 
point outputs. Otherwise 
the elements in the jth 
column will be zero. This 
matrix is considered to 
have a dimension of 
[ N , ,  (1) + 11 X N for 
convenience purposes 
only. Note that if the ana- 
lyst decided to make all 
single point inputs to the 
main deck deterministic 
this matrix would contain 
all 1’s in the second row 
and zeros elsewhere. 

SPDj {i - l} , I A  

A lFil =An N X 1 matrix with a 1 
in the ith row and zeros 
in the remaining rows. 
This matrix will be used 
to “filter” out terms from 
I APD,, 1 ,  hence F is used 
as a notation. 

A I D~NmaZ+l l  x y  I =An (NmLao + 1) X M matrix 
with 1’s in the ith row 
and ith column if i = j, 
and zeros elsewhere. For 
example, 

1 0 0  
0 1 0  

0 0 1  
0 0 0  

0 0 0  

This matrix will be used 
for dimensioning purposes 

1 2  
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IAPDo( IF11 = 

to keep the matrix opera- 
tions consistent. 

PDo { 1,2} 

PDo { 173) 

PDo { 1, N }  

There are enough definitions to start the procedure of 
building up the initial output matrix IPNWmM51, to the 
final matrix of terms by successive addition of mutually 
exclusive terms. About the only way to make the explana- 
tion of the operations reasonably lucid is to explain the 
first step of the process, show its relation to the whole 
process and then generalize to succeeding steps. Now the 
form of the operations needed to build up the final output 
matrix will be as follows: 

IPN,,M~IF = I P N ~ , M s I I  + I D ~ N ~ , + I I ~ [ N , , , ( I ) + I I  I 
X (P{C}IPDiIiIAPDoI 

+ P {e} 1 SPDi 11 1 APDo I 1 F1 I ) 
+ Second step + third step + . . . etc. 

Here an N X 1 matrix was produced whose elements are 

expresses these possibilities in an [N, , ,  (1) + I] X 1 
matrix.This matrix must be multiplied b y  P { C }  because 
the counter must be successful for these possibilities to 
occur, and then it must be dimensioned for addition to the 
column matrix I PNmM5 I. The latter part of the first step 
will be self explanatory. It accounts for the counter in a 
failed state and successes for single data point sources 
into the main deck, which do not depend on clocking 
from the counter. 

Operations in the second step are 

where 

have yet to be defined. First note that the operation of 

the probabilities of single data point successes for indices 
of x i  = 1,2, . . . , N on the main deck. For each one of 
these indices and for a single main deck data point suc- 
cess, there is the possibility of 0,1, . . . , N j  successes 
from subdeck Di where j = xi. Consequently the opera- 
tion of 

produces an N X 1 matrix whose elements are the prob- 
ability of any particular two main deck data point 
successes for a given index xi, where x i  ranges from 2 
to N .  Now each term of two successes with index x i ,  on 
the main deck creates the possibility of surviving points 

PD, { 0}  PDO { 1, I} + PD2 { 0 )  PDo { 1,2} + . * . + PDN { O }  PDo { 1, N }  

PD1 { l} PDO { 1, l }  + PD, { 1) PDo { 1,2} + . . * + PDN { l} PDo { 1, N }  

PD, {2}  PDo (1, l }  + . * . 

IPQI  IAPDOI IF11 = 

PD, { N }  PDo (1, l} f . . . PDN { N N }  PDo { 1, N }  

13 
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from combinations of two subdecks. One of the subdecks 
will be Dri and the other subdeck number may range 
from 1 to xi - 1. Thus the combinations will be DZiD,, 
DZiD2,  . . . , Dri Dzi - ,. For any two subdecks, the prob- 
ability distribution of the number of surviving points is 
given by convolution of their respective probability distri- 
butions, assuming that the decks operate independently. 
This assumption can be considered valid, since we have 
already accounted for the dependencies which exist 
between subdecks, the counter and main deck. Obviously 
the operation 

and to any arbitrary step k + 1. First IPDjr,  is right 
multiplied by an N X N matrix with zeros on and below 
the main diagonal and 1’s elsewhere. For example if 
I PDj  I , were 

will produce a column matrix whose elements are the 
probability of any particular k main deck data point suc- 
cesses for a given value of x i ,  where x i  will range from 
k to N .  Each term will give rise to 

xi  - 1 xi - 1 
( i - l ) = ( k - l )  

right multiplication by 

0 1 1  

0 0 1  

0 0 0  

distinct k-fold convolutions of the probability distribu- 
tion of the subdecks of which one is always PD,,. 

Consider the matrix 

and how it is formulated from 

After explaining this process and consequently the re- 
mainder of step 2, it is possible to generalize to the proc- 
ess of producing 

would yield 

0 PD, (0 )  PD, ( 0 )  + PD, ( 0 )  

0 PD, (1) PD, (1) + PD, (1) 

0 .  

0 .  

0 PD, (4) PDi (4) + PD, (4) 

This operation has the effect of shifting all columns in 
I P D j )  once to the right and adding all elements in the 
same row and in columns, say 1 through c - 1, to the 
element in column c. The result is an [Nmaz (1) + 13 X N 
matrix which will be called I PDjSUM I , . Now the element 
in the rth row mth column of I PDj I , is the coefficient 

in the polynomial in S, say a,, + alS + a$’ + . . . 
generated by 

1 4  
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and ) P D i ) ,  will be an [Nmaz(2) + 11 X N matrix. The 
generatiod of I PD, I k + ,  from lPDj ( k  can now be gen- 
eralized. Let 

A I SUMk I = An N X N matrix with zeros on and below 
the main diagonal, zeros on the k - 1 diag- 
onals immediately above the main diagonal, 
and 1’s elsewhere. 

A I S k  1 = An [N, ,  (k) + 11 X 1 matrix whose element 
in the rth row is equal to S r - l .  

For the general operation, I P D j l k . ,  is an 

matrix whose element in the rth row and mth column is 
the coefficient ar- l  in the polynomial 

a, + a,S + a,SZ + a33 + * * * = 

Note that in an iterative procedure, after I PDj 1 k+l has 
been derived, 1 PDj I k (for k # 1) need not be returned in 
memory. It should be noted finally that the same pro- 
cedure above is applied in producing 

Finally, the process of building up the final output 
probability distribution matrix IPMmaZM51r, can be gen- 
eralized to 

There is no general proof that IPNm,M51F will contain a 
probability distribution. There is a proof for two particu- 
lar cases, but they are omitted in this Report. 

Variations in the general configuration of Fig. 5 can be 
introduced without nullifying the applicability of the 
procedure. For example, if the subdecks derive clocking 
from the main deck instead of the counter, this can be 
easily accounted for by methods similar to those demon- 
strated in the latter part of the preceding subsection. The 
form of matrix operations however is not altered; only 
particular elements in certain matrices. Multiplexer con- 
figurations which have more than two levels can easily 
be accommodated by this procedure by considering the 
subdecks to be analogous to main decks for the next 
lowest level of commutation. 

15 
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V. ANALYSIS APPROACH TO A MULTIPLEXER CONFIGURATION 
Y 

WITH DEPENDENT CLOCKING FUNCTIONS 

A. Introduction 

Figure 6 is a diagram of a multiplexer in which clock- 
ing functions are performed redundantly by the decks 
themselves. The figure is not general, but can easily be 
made so. The main clock enters the highest data level 
in the multiplexer and clocks the decks in parallel. The 
deck clock outputs are routed to synchronizers, which are 
essentially ac coupled OR gates. The output of the syn- 
chronizers clocks the next lowest level and performs a 
resetting function on the decks which input to it in order 
to maintain proper mutual phasing of these decks. It is 
evident that the deck lengths on any data level are all 
equal, since the synchronizer scheme would be useless 
otherwise, This fact, however, does not tend to simplify 
the analysis to any great degree since the individual prob- 
ability distribution of decks on the same level may dif- 
fer because of signal conditioning equipment differences 
or because of a different number of sub-deck inputs to the 
decks. External clocking is supplied to the isolator deck 
and the highest data level through a counter. The counter 
maintains correct phasing between the isolator deck and 
the decks in the highest data level. 

II 
II 
II 
It 
II 
II 
II 
II 
I1 
II 
I! 

CLOCK TO SYNCHRONIZER 

TO LEVEL 2 TO LEVEL I 

Fig. 6. Multiplexer with redundant clocking functions 

The main emphasis in this subsection will be on the 
approach to the analysis. There are no answers which can 
be put neatly in closed form. The approach outlined here 
will be sketchy, but its purpose will be served if the 
impression is left that for any specific configuration, there 
will always be some fringe outcome enumeration which 
has to be done. A specific example of this was noted when 
a counter was postulated in the last section, and by doing 
this the final closed form for the answer was made some- 
what less aesthetic in a mathematical sense. 

0. Approach to the Analysis 

In the multiplexer under scrutiny it was noted that the 
presence of synchronizers eliminates the need for most 
of the individual deck synchronization elements ;however, 
there is a price to be paid. If any synchronizer fails, 
clocking is lost to all lower data levels, and synchroniza- 
tion is lost to the decks which input to the failed syn- 
chronizer. Each deck has its own resetting and short 
counting feature, but this does not guarantee that all 
decks will stay in synchronization after a synchronizer 
failure. True, if the data is distinguishable over the 
ensemble of data points of the decks, and redundant with 
respect to time histories, then it is quite possible that 
ground data processing could eventually decommutate 
the data. Whether the analyst decides to consider this 
mode a success is up to his own discretion. A synchronizer 
failure is defined here as a failure to all lower data levels 
and to its own level. Also, if a synchronizer does not fail, 
then the requirement for clocking to this next lower level 
is that at least one deck in the synchronizer’s level have 
all its memory elements succeed. This condition will also 
insure that data points on decks, which may be short 
counting, can be decommutated, provided that ground 
data processing is sensitive to this kind of condition on 
the spacecraft. 

Figure 6 is divided into three areas. The basis for 
dividing the multiplexer like this is as follows: All decks 
which eventually output to, for example, DATA OUT- 
PUT J, are included in the area j .  Temporarily the isolator 
deck, the counter, and the synchronizers will be disre- 
garded. The muItiplexer configurations in the respective 
areas can be analyzed independently of each other, but 
at the same time, a bookkeeping system can be set up for 
the probability distributions as a function of the clocking 
outputs to the synchronizer, i.e., the 0n-j shown in the 

1 6  
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figure. ThOse probability distributions are in essence joint 
probability distributions of the number of surviving points 
and number of clocking outputs which are successful. 
A clocking output Ok- from any area j is defined as being 
successful if at least one of the decks in level k in area i 
is successful in delivering an output. These joint prob- 
ability distributions will be of the form 

P { i , O I - j , O 2 - j ,  * . . , O b i }  

where L is the maximum number of levels in area j and 
the O k - j  are defined to assume value 0 otherwise. How is 
this accomplished? From the figure it can be seen that 
areas 2 and 3 are simple and can readily be accommo- 
dated using the general analysis scheme in the previous 
subsection with minor modifications for bookkeeping. 
Area 1 is somewhat more difficult. However, this area can 
be broken down into Area lA, and Area 1B can be ana- 
lyzed separately up to the output of the data deck which 
feeds into Area lA, and then the two separate analyses 
can be combined. 

The question may be asked at this point how these joint 
probability distributions in any particular area (or sub- 
area) are derived. Both probability distributions of the 
individual decks, PDi {i} and PDj {i, x i }  can easily be 
separated into those terms in which the deck clock output 
is successful, and those terms in which a clock output is 
not successful. The terms will be mutually exclusive. 

Once this is done a bookkeeping system can be set up in 
applying succeeding general analysis procedures, as out- 
lined in the preceding section, to build up arrays of the 
joint probability distributions for each condition of the 
outputs in each area. Once these joint distributions for 
each area are produced, appropriate distributions may be 
combined by convolution operations subject to failure 
modes postulated in the synchronizers, counter, the iso- 
lator deck, and the outputs of each area. To outline this 
approach in further detail would only result in an elab- 
orate amount of unnecessary definitions and detailed 
operations. 
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VI. SOME RESULTS AND AREAS FOR FURTHER STUDY .I 

Points 
surviving ( i ) "  

The probability distribution for the number of surviv- 
ing points on a multiplexer deck PD {i} has been pro- 
grammed on a 1620 computer for entering arguments of 
deck length, absolute failure probabilities, and condi- 
tional failure probabilities for switches and memory ele- 
ments. Table 1 presents the results of two runs. Run times 
from execution to final output were 5 min for a deck of 
length 10, and 24 min for a deck of length 20. Run time 
increases exponentially as a function of deck Iength. It is 
fairly evident that complete multiplexer analyses are not 
within the capability of the 1620 from a time standpoint. 

Of 

exact'y points 
surviving 

Probability that the number of 
surviving points i s  less than i 

Further study in the area of multiplexer reliability 
analysis can be divided into three parts: 

I Run l b  I Run 2" 1 Run 1 

1. The intrinsic analysis methods 

Run 2 

2. The continual process of analysis verification by 
empirical methods 1 

0 
(due to open 

failures) 

0 
(due to closed 

failures) 

3. The mating of analysis methods with success criteria 
to improve the synthesis process 

0.0122 0.0521 0.5599 0.1074 

0.01 25 0.0552 0.5477 0.0552 

0.5351 O.OOO0 

In the area of the analysis methods themselves, empha- 
sis is required in improving the realism of the analysis 
on the basic deck model and should be expanded of 
course in scope to include models of other deck con- 
figurations. Another area which needs great emphasis is 
the organization of computer subroutines for frequently 
used operations (such as convolution) which can be 
speedily combined to form a program for a specific multi- 
plexer configuration. Reliability analysis in the multiplexer 
area has been extremely slow in the past, to the point 
of having negligible value in the design process. More 
speed for the analysis process, combined with some 
degree of realism should be a specific goal in organizing 
computer programs. 

Although empirical results take time to be generated, 
their value in verification and improvement of basic 
analysis techniques cannot be denied. Consequently this 
second area for further study should receive due emphasis. 
Statistical testing of multiplexer configurations, the basic 
elements, and the devices themselves to obtain failure- 
effects data on all levels of the multiplexer are a necessary 
part of this area. 

Table 1. Two computer runs to obtain probability 
distribution of number of surviving points on 

multiplexer deck of length 10. 

E 0.791 2 

0.5470 

6 

5 

4 

3 

2 

0.01 10 

0.0109 

0.01 12 

0.0115 

0.01 18 

0.0455 I 0.6167 0.3355 

0.2898 

0.2474 

0.2033 

0.1567 
I I I I 

Analyses results, per se, do not yield significant inputs 
to a design process unless they can be mated with success 
criteria. Obviously, if the only success criteria for a mul- 
tiplexer specified no degradation in the transfer function 
of the multiplexer, the analysis in this Report would not 
be required; it would only be necessary to count the parts 
and compute failure rates. However, it is certainly logical 
to assume other kinds of success criteria will be required. 
The outlining of these S U C C ~ S S  criteria in mathematical 
terms and which approximate intuitive notions on what 
success should be are not readily available at prescnt. 
The output of the analyses here is amenable to such 
criteria as the expected value of the number of surviving 
points, the expected value of some function of the num- 
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ber of surviving points, or the probability that the number 
of succesdul points will not drop below some specified 
number. Though one of the deck models has provision 
for retaining the identity of individual points, most of 
the output results do mask the identity of individual 
points and consequently their individual importance. If 
success criteria based upon some weighting function of 
the input data are desirable, then the type of analysis 

J P L  TECHNICAL REPORT NO. 32-698 

considered here would have to be extended. In this type 
of analysis there is a possibility for assigning individual 
data points weights greater than one and deriving output 
figures of merit for specific deck or multiplexer configura- 
tions. The question of usable success criteria and analysis 
methods which are compatible with them will certainly 
not be answered by such general discussions and remains 
a necessary area for further studies. 

1 9  



JPL TECHNICAL REPORT NO. 32-698 

APPENDIX A 
Verification of PND { i }  as a Probability Distribution 

Y 

In the body of this Report, P,D { i }  had the form 

and 

N - i - k  1 
for i = 1 , 2 ,  * . . , N .  It is to be verified that 

This can be demonstrated by proving that 

Using a change of variable i = N - i to put the left side 
statement ( A - 1 )  in more convenient form, with some 
rearrangement, gives 

Examining the binomial coefficients and limits in the last 
expression, it will be seen that the following is true: 

Therefore, first sum over the i indices assuming fixed 
values of k and r, then sum over k assuming a fixed value 

of r, and finally sum over r from 1 to N .  The first step 
yields 

N 

mN (s + so)@ + r = 1  E mN-" (m,). 
k = r  

- 

N - k  
j - k  

The last inner summation of the second term is 

N - k  
1 - k  

By a translation of variable, i.e., x = i - k ,  

o=o 
= ( s  + s o y  

Therefore, statement ( A - 1 )  becomes 

Now summing over k involves the last summation in the 
second term or 

Letting k - T = y, for this term 

N - r  y + r - 1  
y = n  E(  r - 1  )=(Y) 

from the relation 

M + r  
r - 1  

with y = y, M = N - r (Ref. 1). Therefore, statement 
( A - 1 )  reduces to 

mN(s+s,)N + ( S + S o ) N ~ ( 3 1 ) m r - r ( m o ) .  r - I  

= mN (s + s o y  + (s + s,)N[(m + mo)N - m]N 

= [(s + so) (m + m,)]" 
\vhich is what was to be proved. 
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b APPENDIX B 
Verification of P N D  {i, x i }  as a Probability Distribution 

In the body of this Report, PND {i, x i }  had the form statement (B-1) can be reduced immediately to one sum- 
mation over xi by letting y = i - 1. Thus statement (B-1) 

= s(s + s 0 ) Z i - 1  * . . 
i = l , 2 ,  . * , N ;  x i = i , i + l , .  . . , N  z i = 1  

and after successively using the relation (Ref. 2) 
A 

PND (0, xo} = PND {0 }  = 1 - [(s + so) (m + mO)lN P { E , }  

As in Appendix A, it must be proved that 

which can be demonstrated by proving that 

1 N h ‘  

is equal to 

[(s + so) (m + %)IN 

(F - 1) 
u + ar + ar2, . . . , n terms = a- r - 1  

for the inner summations, statement (B-1) becomes 

N 

s (s + s , ) Z i - ’  m z i  [ (mr0)N-Z1 (1 - y + y ( z ) N - = i )  
2 ,=1  

+ (mo)”(l- y + y(z)N-”i)] 

where 

and 

After an interminable amount of algebraic reduction, the 
last set of equations finally reduces to Reversing the order of summation and noting that there 

are only three terms involved in the summation over i, 
namely, 

[(s + so) (m + m0)lN 

si(So)zi- i  . . . 
z i = 1  i = l  (B-2) which is what was to be proved. 
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APPENDIX C 
Generating Functions - A  Quick Refresher 

Consider M independent probability distributions 

pi {Xi}, p:! {Xz}, . . 2 pj {Xi}, . . . 3 PM {XM> 

where Xj is a random variable which can assume integer 
values over some defined range. For the cases considered 
in this Report, Xi will only assume non-negative values 
0,1,2, . . . , N, ,  where N j  is the maximum value which 
Xi may assume. 

Suppose the probability distribution for the sum of 
the random variables was desired, say 

z=x,+x, + ,  ' ' . ,+xi+, . . . , +XM 
then 

p{z}  =pl{X,}*pa{Xz}*,*.. ,*pi  {Xj}*,... , * ~ M { X M }  

where * denotes the convolution operation. The variable 
Z will assume discrete values from 0 to 

Z N i  
A l l  j 

Define 

a NI 
A j ( S ) =  2 pj {Xj}Sxj 

x,=o 

Y 

which is a polynomial in S with N j  + 1 terms. This is 
called the generating function for the probability distri- 
bution pi {Xi}. Now the generating function for p {Z}, 
say B ( S ) ,  is 

k =  ,X Nj 
M A l l  j 

B (S) = n Aj ( S )  = p (2 = k) S k  (c-1) 
j=1 k=O 

The coefficients of Sk  terms in this polynomial are, as can 
be seen from Eq. (C-l), the probabilities that the varia- 
ble Z will assume the value k. Of course 

p(Z=k)=l 
A l l k  

The generating function furnishes a useful tool in de- 
riving probability distributions for the sum of random 
variables and essentially converts the task of outcome 
enumeration into multiplication of polynomials with the 
added convenience of a built-in bookkeeping system. For 
application in this Report, the random variables can be 
considered to be the number of data points surviving in 
a multiplexer deck. Consequently, operations with gen- 
erating functions are extremely useful in compiling prob- 
ability distribution for the number of surviving points in 
more than one deck. 

22 



JPL TECHNICAL REPORT NO. 32-698 

REFERENCES 

1 .  Feller, W., An Introduction to Probability Theory and Its Applications, Vol. I, 2nd ed., 
Wiley and Sons, Inc., 1957. 

2. Jolly, 1. B. W., Summation of Series, Dover Publications, Inc., 1961. 

23 


